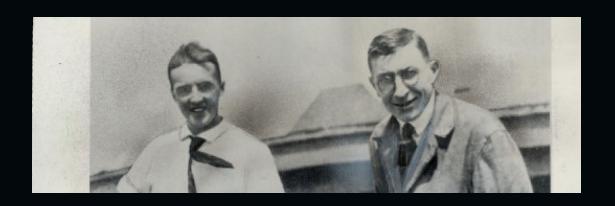




# Delayed Initiation of Insulin Therapy and Glycemic Control in Patients Who Decline Insulin

Naoshi Hosomura, DDS, DMSc<sup>1,2</sup>, Huabing Zhang, MD<sup>3</sup>, Alexander Turchin, MD, MS, FACMI<sup>1,2,4</sup>


June 11, 2017

Naoshi Hosomura, DDS, DMSc


Disclosed no conflict of interest

#### PHOTOGRAPHY PROHIBITED

Please do not take photos during this presentation.



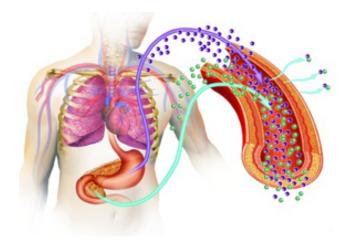
# Background

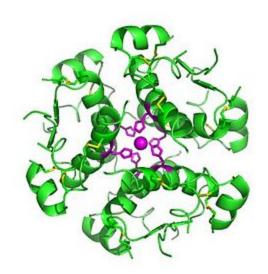




## Background




- Provider experience shows that many patients decline insulin therapy.
- Systematic data on the outcomes of the patients who decline insulin therapy are lacking.
- Medication decline is not reflected in administrative or structured electronic clinical data, but is primarily recorded in narrative notes.




## Objectives



• To determine whether patients who decline insulin and delay insulin therapy initiation have worse glycemic control than individuals who accept insulin therapy without delay.

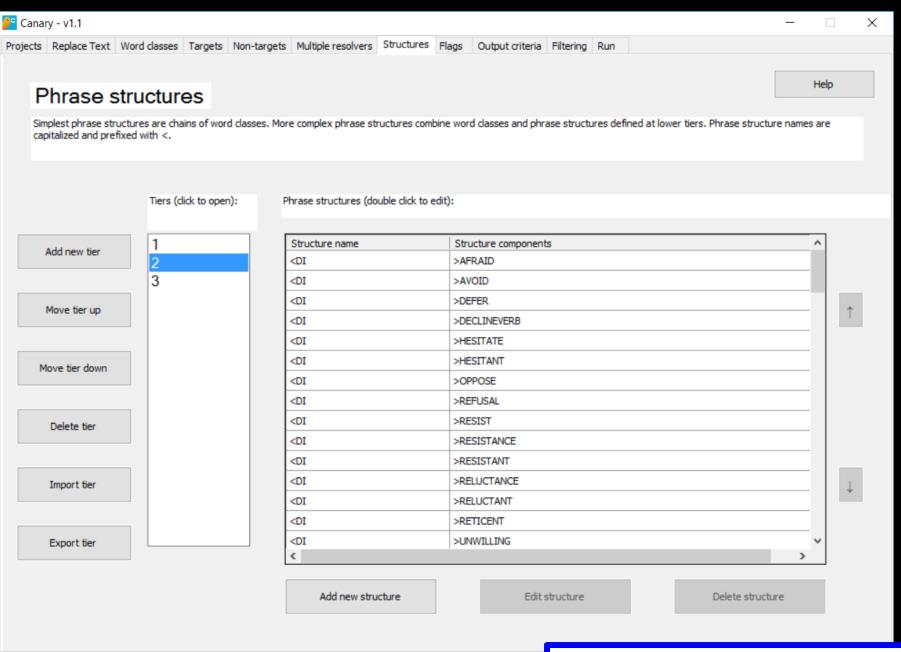




## Materials & Methods






## Approach



- We developed a natural language processing (NLP) algorithm to identify insulin therapy decline by patients from the text of physician notes.
- We used Canary, an open-source NLP platform designed for clinicians and researchers.
- The NLP tool achieved 100% sensitivity and 95% PPV.



http://canary.bwh.harvard.edu





#### Materials and Methods



### **Study Design**

• Retrospective cohort study

#### **Study Cohort**

- Adults with diabetes treated in primary care practices affiliated with BWH or MGH between 2000-2014 who:
  - a. had no prior history of insulin prescription or documented insulin therapy decline
  - b. had HbA1c  $\geq 7.0\%$
  - c. received a prescription for insulin during the study period



### Materials and Methods



#### **Exclusion Criteria**

- Diagnosis of type 1 diabetes
- eGFR < 30 at baseline



#### Materials and Methods



#### **Predictor Variable**

• Binary variable: whether or not the patient declined insulin therapy recommendation

#### **Outcome Variable**

- Time to A1c < 7.0%
  - Starts from the study entry date and ends at the study exit (HbA1c below 7.0%, 1 year after the last note, death, study end date)



## Statistical Analyses



- Log-rank test to compare Kaplan-Meier curves for time to HbA1c control
- Marginal Cox proportional hazards models to estimate the association between time to HbA1c control and insulin therapy decline, adjusted for covariates and clustering within individual providers



## Results





## Study Population



3,032 adults with diabetes included in the study

2,487 (82%) started insulin therapy without delay

- Median time to HbA1c < 7.0%: **13 months**
- 930 (37%) reached HbA1c < 7.0%

**545** (18%) initially declined insulin

- Median time to insulin acceptance: 18 months
  - Median time to HbA1c < 7.0%: 43 months
  - **232** (43%) reached HbA1c < 7.0%



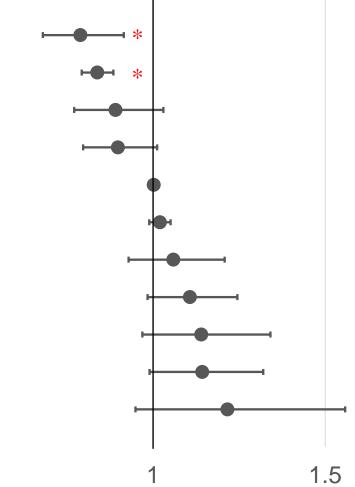
#### Insulin decline and time to HbA1c control





|                         | Median time to<br>HbA1c control |
|-------------------------|---------------------------------|
| Declined insulin        | 43 months                       |
| Did not decline insulin | 13 months                       |

p < 0.0001 by log-rank test




# Effect of patient and treatment characteristics on time to HbA1c control



Declining insulin therapy
Number of non-insulin diabetes meds
Presence of diabetes complications
Female
Median income by zip code
Baseline HbA1c level
Government health insurance
Married

English as the primary language



0.5

White race

Endocrinology clinic

\* *P* values < 0.005 were significant after Simes-Hochberg correction.



# Effect of patient characteristics on acceptance of insulin therapy



Number of non-insulin diabetes meds

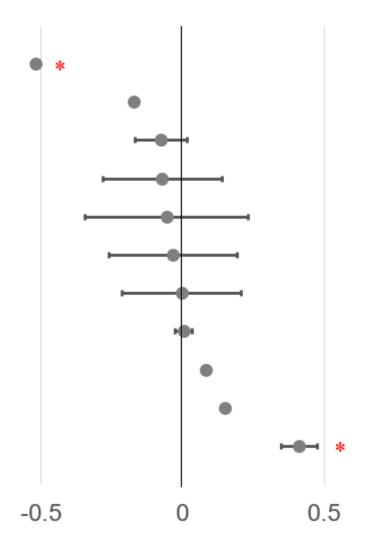
**Female** 

English as the primary language

Government health insurance

Married

History of adverse reactions to medications


Age

Income

Baseline HbA1c level

White race

Presence of diabetes complications



<sup>\*</sup> P values < 0.005 were significant after Simes-Hochberg correction.

## Discussion & Conclusions





### Discussion



- Natural Language Processing is a powerful technology that allows analysis of previously unexplored phenomenon of insulin therapy decline by patients with diabetes.
- This is the first study to describe the sequelae of insulin therapy decline by patients.
- Insulin therapy decline is common among patients with uncontrolled diabetes.



### Discussion



- Patients who decline insulin and delay the initiation of insulin therapy take more than 3 times as long to achieve glycemic control compared to individuals who start insulin therapy without delay.
- Insulin therapy decline by patients was the strongest predictor of time to achievement of glycemic control in patients with uncontrolled diabetes.



## Discussion



- Patients with existing diabetes complications were less likely to decline insulin therapy.
- Further research is needed to study reasons for insulin therapy decline by patients and its long-term outcomes.



## Limitations



- Conducted at two large academic hospitals
- Retrospective study



## Conclusions



- Delayed initiation of insulin therapy in patients who decline insulin was associated with longer time to achievement of glycemic control.
- This important clinical phenomenon of insulin therapy decline by patients must be addressed to improve the care and outcomes of patients with diabetes.



## Acknowledgments



Shervin Malmasi, PhD
Dmitriy Timerman, MD
Victor J. Lei
Lee-Shing Chang, MD

**Funding:** Sanofi-Aventis





## Questions?

Naoshi Hosomura, DDS, DMSc nhosomura@partners.org